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Abstract—Pedestrian trajectory prediction is a key research
topic in the field of computer vision and has been widely used in
practical applications, such as robot navigation and autonomous
driving. Previous studies predict the future trajectory by decoding
the learned motion feature via a self-recurrent architecture,
which leads to a significant prediction deviation of the end-
point. Therefore, we propose Predicted Endpoint Conditioned
Generative Adversarial Network (PECGAN) to predict the future
trajectory without significant endpoint deviations. In our model,
endpoint prediction is the primary goal which is accomplished
through a conditional variables autoencoder. The estimated
endpoints, coupled with past trajectories are encoded as the
motion feature, and refined by a social interaction module which
adopts the self-attention mechanism for message passing. The
refined motion features infer the intermediate trajectory more
accurately. Experimental results demonstrate that PECGAN can
generate a realistic and diverse set of trajectories that respect
physical constraints. Our proposed model improves state-of-the-
art performance on the Stanford Drone Dataset benchmark and
the ETH-UCY benchmark.

Index Terms—endpoint prediction, trajectory prediction, so-
cial interactions, conditional variational autoencoder, generative
adversarial network.

I. INTRODUCTION

Pedestrian trajectory prediction is a research hotspot in

the field of computer vision, which has a wide range of

applications in abnormal behavior detection [1], auto-driving

of automobiles [2] and control of social robots [3], etc.

Pedestrian travel is mainly motivated by destination and the

social interactions. However, due to the uncertainty of the

destination and the complex and subtle social interactions

among pedestrians, predicting the future trajectory is full of

challenges.

Most of the preceding works [4]–[9] focus on the prediction

of a complete future trajectory based on the past trajectory

and social interactions among pedestrians. However, due to

the uncertainty of the destination, these models generate

equal possible results in different directions. To address this,

generating future trajectories according to estimated goals [9]–

[12] has been proposed. Remarkably, Fang et al. [12] and

Dendorfer et al. [11] utilize the past trajectories of all the

pedestrians in the scene as well as the scene information to

predict future endpoints, and then generate the future trajectory

purposefully. Different from the above methods, Mangalam

et al. [9] adopt a conditional variational autoencoder(CVAE)

to estimate the endpoint, and utilize multi-layer perceptrons

(MLPs) to interpolate the intermediate positions. This method

does not make use of the scene information and also achieves

good results. In this article, a two-stage motion prediction

framework is proposed for predicting future trajectories with-

out using scene information, and achieves the state-of-the-art

results on the latest popular trajectory prediction datasets ETH

[13], UCY [14] and Stanford Drone Dataset [15].

Inspired by [11] and [9], we propose Predicted Endpoint

Conditioned Generative Adversarial Network (PECGAN).

This is a novel two-stage method that makes the distribution

of prediction targets more clear by adding constraints to Con-

ditional variational autoencoder. The first stage estimates the

endpoint of the future trajectory via a Variational Autoencoder

model. The fused features of the predicted endpoints and the

past trajectories are employed in trajectory generation module

to infer the intermediate positions in the second stage.

To sum up, our principal contribution is triple: (1) A condi-

tional generative adversarial network is proposed for multiple

socially acceptable trajectory predictions. (2) We introduce a

novel two-stage framework for the future trajectory prediction,

in which the endpoint prediction is the primary objective, and

the intermediate trajectory is conditionally inferred from the

predicted endpoint. (3) The self-attention mechanism is em-

ployed for message passing to model social interactions, and

it can be performed several times to model deep interactions.

The remainder of this paper is organized as follows. Section

II briefly reviews the related work of our method. Section

III introduces the details of each module of PECGAN and
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the regularization strategy. In Section IV, we illustrate the

experiments and comparative analyses, with some conclusions

presented in Section V.

II. RELATED WORK

A. Trajectory Prediction

There are many methods to predict pedestrian trajectories

based on deep-learning models. The Long Short Term Memory

(LSTM) is one of the most well-known approaches for model

trajectory prediction. Alahi et al. [5] propose a Social LSTM

that predicts a trajectory based on a social pooling layer,

which aggregates the neighbor pedestrians’ hidden states. To

generate multiple socially acceptable trajectories, Gupta et al.

[6] firstly propose Social-GAN that predicts socially plausible

future trajectories by training adversarially and encourage

multiple predictions with a new variety loss. Recently, many

GAN-based trajectory prediction methods [7], [11], [16] have

made good progress. As another popular generative model,

the conditional variational autoencoder (CVAE) [17], [18] is

widely adopted in trajectory prediction [9], [19].

In this paper, GAN is used as a framework for predicting

socially acceptable trajectories. The CVAE is viewed as a sub-

module of the generator to generate the predicted endpoints.

B. Social Interaction Modeling

To model the complex and subtle social interactions among

pedestrians, hand-crafted features are adopted to predict tra-

jectories, such as Social Force [4] and Gaussian Processes

[20]. Recently, with the development of deep-learning tech-

nology, data-driven approaches have proven highly successful

in predicting pedestrian trajectories. In these methods, social

interactions are modeled by the social pooling mechanism [5]–

[7] and self-attention mechanism [8], [9], [12]. The social

pool mechanism cannot model different impacts on different

neighbor pedestrians. Self-attention mechanism can accurately

acquire the respective weights for different pedestrians and has

achieved great success in modeling social interaction.

Different from the traditional attention mechanism, self-

attention mechanism has achieved excellent performance in

modeling social interaction through a novel information trans-

mission mechanism. Therefore we adopt a novel self-attention

mechanism as a sub-module of the generator to model social

interactions among pedestrians.

C. Endpoint-conditioned Prediction

The previous works are predicting the future path of the

pedestrian according to the past trajectory, regardless of the

pedestrians’ destinations which play a key role in their motions

in the scene. Rehder et al. [10] predict a probability map of

each target pedestrian’s endpoint based on the surrounding

environment. However, Rehder et al. [10] predict possible

destinations based on precomputed environment features, but

ignore the pedestrians in the scene who are the key to predict

short-term motions. Dendorfer et al. [11] tend to achieve the

goal estimation first and estimate a set of plausible trajecto-

ries that route towards the estimated goals based on RNNs.

However, the error accumulations exist in the recurrent-based

prediction, which results in a large deviation of the endpoint

of prediction. Different from the above method, Mangalam

et al. [9] adopt a conditional variational autoencoder (CVAE)

to estimate the endpoint, and utilize MLPs to interpolate the

intermediate positions. However, Mangalam et al. [9] only

optimize the distribution of samples by reducing the distance

error between the predicted trajectory and the ground truth.

This constraint is too weak to obtain a goal distribution

explicitly. The generated endpoints still have a significant

deviation from the endpoints of the ground truth.

To obtain a reasonable distribution of the predicted end-

points and generate multiple socially acceptable trajectories

through the predicted endpoints, the CVAE is used as a sub-

module of the generator to predict possible destinations in the

proposed model.

III. APPROACH

A. Overview

In this section, we present the proposed PECGAN. As

shown in Fig. 1, PECGAN has two components: the generator

and discriminator. In the generator, there are two stages for

trajectory prediction. In the first stage, the past trajectory along

with the ground truth endpoint is used to train a CVAE for the

endpoint of trajectory in the endpoint generation module. In

the second stage, the trajectory generation module generates

the intermediate positions by taking the endpoint of prediction

into account. The discriminator module is composed of the

feature encoder and classifier. The feature encoder captures the

features from the intermediate trajectory and endpoint, and the

classifier identifies whether the input trajectory is generated by

the generator or not. The details of PECGAN are described in

the following sections.

B. Problem Formulation

In this paper, we focus on how to more accurately predict

the pedestrian trajectory in crowded scenes. For each sample,

we assume there are N pedestrians involved in the scene. Given

observed trajectory Xi = {X0
i , X

1
i , ..., X

Tobs
i } of pedestrian

i, where {Xt
i = (xt

i, y
t
i)} represents the ground truth po-

sition at time t, the problem requires predicting positions

{Ŷ t′
i |(x̂t′

i , ŷ
t′
i ), t

′ = Tobs + 1, Tobs + 2, ..., Tpred} of future

Tpred key frames. The future positions of ground truth are

denoted as {Y t′
i |(xt′

i , y
t′
i ), t

′ = Tobs + 1, Tobs + 2, ..., Tpred}.

C. Generator

In the trajectory prediction task, GAN-based models such

as social-GAN [6], NMMP [7] and goal-GAN [11]achieve the

goal of effectively predicting the future trajectory. However,

the importance of endpoint prediction is not taken into consid-

eration in these methods. To achieve this, a novel GAN-based

model (PECGAN) is proposed to predict the future trajectory.

In the generator, the future trajectory is predicted in two steps:

1. Predicting the endpoint of the future trajectory; 2. Inferring

the intermediate positions through the predicted endpoint.
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Fig. 1. Architecture of PECGAN. PECGAN has two components: the generator and the discriminator. The generator consists of an endpoint generation
module and a trajectory generation module. In the generator, the endpoint is predicted through the endpoint generation module. The trajectory generation
module is designed to predicts the intermediate positions. The discriminator network consists of multiple multi-layer perceptrons to distinguish between real
and fake trajectories.

1) Feature Encoder: We propose two kinds of encoders,

trajectory encoder and endpoint encoder. In order to capture

the motion features of pedestrians, each trajectory’s relative

displacement vectors (Δxt
i,Δyti) are fed into a trajectory

encoder with multi-layer perceptrons. The obtained trajectory

features are embedded into the endpoint generation module

and the trajectory generation module to generate the endpoint

and the intermediate trajectory respectively.

2) Endpoint Generation Module: In this section, a novel

endpoint generation module is developed to predict the end-

point of the trajectory. As shown in Fig. 1, during the training

process, the PECGAN fuses the motion features acquired by

the trajectory encoder and the endpoint feature acquired by the

endpoint encoder. The fused features are fed into the CVAE’s

latent encoder to encode the latent variable z = N (μ, σ). Here,

the latent codes can be sampled multiple times from the normal

distribution to generate multiple socially acceptable endpoints.

To encode the latent variable z = N (μ, σ), a novel CVAE is

proposed to encourage the generation of the multiple possible

endpoints. The endpoint (xt′
i , y

t′
i ) of the pedestrian trajectory

is regarded as a known condition of the VAE. we sample

the latent code z from N (μ, σ), and the fused features of

motion feature and latent code z are fed into the endpoint

decoder to obtain the predicted endpoint Ŷ
Tpred

i . However, it

is impossible to take the ground-truth endpoint as input data

during the inference process. Therefore, the latent code z will

be sampled from N (0, 1). Here, the latent codes are sam-

pled multiple times from the standard normal distribution to

generate multiple socially acceptable endpoints. The predicted

endpoint will be served as the input data of the Trajectory

Generation Module to predict the intermediate trajectory.

3) Trajectory Generation Module: We obtain the endpoint

Ŷ
Tpred

i of the trajectory through the Endpoint Prediction Mod-

ule, the next goal is interpolating the intermediate trajectory

{Ŷ t′
i |(x̂t′

i , ŷ
t′
i ), t

′ = Tobs +1, Tobs +2, ..., Tpred − 1}. To gen-

erate the trajectories of all pedestrians, the latent interactions

among pedestrians are modeled through a social interaction

module in the trajectory generation module. The structure

of the trajectory generation module is provided by Fig. 2.

To better interpolate intermediate trajectories, we fuse the

Trajectory
Decoder

*

* /

Input Output
Softmax

Social Interaction Module

qi

vi

ki

Multi-Layer Perceptron

Fig. 2. Trajectory Generation Module. The social interaction features are
generated by the social interaction module, and the intermediate positions are
generated through the trajectory decoder.

features from the endpoints of future trajectories and the past

trajectories. The fused features hi are regarded as latent motion

features to model the social interactions among pedestrians

through the self-attention mechanism. For each feature hi, we

acquire its corresponding query vector as qi = fQ(hi), key

vector as ki = fK(hi), and value vector vi = fV (hi), where

fQ(·), fK(·) and fV (·) represent MLPs. The self-attention

mechanism is formalized as follows:

ui,j =
qi × ki√

dk
(1)

ai,j =
expui,j∑
k expui,k

(2)

hi =
∑
k

ai,k · vk (3)

where the dk is the dimension of the query vector. The

output hi serves as input to the prediction decoder Pfuture

to obtain the intermediate positions from the last observed

position to the endpoint. The transmission of the message is

performed several times for modeling the deep interactions

among humans.

D. Discriminator

To get socially acceptable trajectories, the Generative Ad-

versarial Network (GAN) is proposed to train the generators in

PECGAN. The discriminator learns to distinguish the actual

samples from the false ones, while the generator learns to

generate the future trajectory.
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The structure of the discriminator is given in Fig. 1. The

discriminator of PECGAN includes the feature encoders and

the classifier. As mentioned above, the generator of PECGAN

has two components: the endpoint generation module and the

trajectory generation module. The gradient optimization will

also be performed on the two modules. Similar to the generator

of PECGAN, the feature encoders of the discriminator consist

of the trajectory encoder and the endpoint encoder. First the

endpoints from ground truth or the generator are fed into

the endpoint encoder to capture the endpoint features he.

Concurrently, the intermediate positions before endpoint are

fed into the trajectory encoder to capture motion features

hf . Accordingly, a multi-layer perceptron is applied as the

classifier to obtain a classification score, such that:

he = Eend(Y
Tpred

i ) (4)

hf = Efuture(Yi) (5)

pi = Dcls(he ⊕ hf ) (6)

where Eend, Efuture and Dcls is a multi-layer perceptron with

ReLU non-linearity, ⊕ is the concatenate operator.

E. Losses
To train our PECGAN, two loss terms are designed: the

generator loss LG for the generator fooling the discriminator,
and the discriminator loss LD for the discriminator correctly
classifying the generator. Both loss terms are as follows:

LG = Dkl(N (μ, σ)‖N (0, 1)) + ‖Yi − Ŷi‖2 + ‖Y tpred
i − Ŷ

tpred
i ‖2

(7)

LD = logD(Xi, Yi) + log(1−D(Xi, Ŷi)) (8)

where G represents the generator and D represents the

discriminator, the Kullback-Leibler divergence Dkl pushes

the approximated posterior N (μ, σ) to the prior distribution

N (0, 1).

IV. EXPERIMENTS

In this section, we assess our approach using three publicly

available pedestrian trajectory datasets: ETH Dataset [13],

UCY Dataset [14] and Stanford Drone Dataset [15]. Our

model is compared with recent state-of-the-art baselines on

these datasets.

A. Implementation Details

Our experiments on the three datasets are carried out under

the same hardware environment, the processor is AMD Ryzen

7 3700X 8-Core Processor, and the graphics card is NVIDIA

2080Ti GPU. All sub-networks in our proposed model are

MLPs with ReLU non-linearity. The dimensions of MLPs

of each of the subnetworks are list in Table. I. The adam

optimizer is used to iteratively train the generator and the

discriminator. For the ETH-UCY dataset, the batch size is set

to 256, the learning rates of generator and discriminator are

set to 0.0002 and 0.0008, respectively, and it takes about 500

epochs for our network to converge. For the SDD dataset, the

batch size is set to 512, the learning rates of generator and

discriminator are set to 0.0001 and 0.0004, respectively, and

it takes about 800 epochs for our network to converge. The

social interaction module is performed 1 and 3 times on ETH-

UCY and SDD, respectively.

TABLE I
THE DIMENSIONS OF MLPS OF EACH OF THE SUBNETWORKS USED IN THE

MODULE.

Network architecture

Generator

Epast 16 → 512 → 256 → 16
Eend 2 → 8 → 16 → 16
Elatent 32 → 8 → 50 → 32
Dlatent 32 → 1024 → 64 → 128
fQ, fK 32 → 512 → 64 → 128
fV 32 → 512 → 64 → 32
Pfuture 32 → 1024 →512 → 1024 → 22

Discriminator

Efuture 22 → 512 → 256 → 16
Eend 2 → 8 → 16 → 16
Dcls 32 → 64 → 32 → 1

1) Evaluation Metrics: Similar to prior works [6], [21],

the proposed method is evaluated with two types of metrics

as follows:

1. Average Displacement error(ADE): the Mean Square

Error(MSE) between the predicted trajectory and the

ground-truth trajectory of all predicted time steps.

2. Final Displacement error(FDE): the Mean Square Er-

ror(MSE) between the predicted trajectory and the

ground-truth trajectory at the last predicted time step.

2) Baselines: We compare PECGAN against several pub-

lished baselines including previous state-of-the-art methods.

S-LSTM [5] combines LSTM with a social pooling layer,

which aggregates the hidden states of the neighbor pedestrians.

S-GAN [6] leverages a GAN framework using pooling to

model social interactions. SoPhie [16] predicts trajectories

compliant to social and physical constraints based on S-GAN.

Goal-GAN [11] proposes a two-stage trajectory prediction

model, which first estimates the target and proposes a set

of credible trajectories to the estimated target based on the

recurrent neural network (CNN). TPNet [12] first generates

potential future trajectories as proposals, then classifies and

refines the proposal using a DNN-based model. NMMP [7]

models the interactions and learn representations for direct

interactions among actors via the neural motion message

passing. Transformer-TF [22] is a novel trajectory prediction

architecture via transformer. PECNet [9] predict multiple

trajectories via CVAE model.

B. Quantitative Results

In this part, we compare our model with the above baselines

on the ADE and FDE metrics on the ETH-UCY and Stanford

Drone Dataset.

ETH-UCY: Table. II presents the quantitative results of our

model on the ETH-UCY dataset. In the baselines, S-LSTM, S-

GAN, SoPhie, NMMP and Transformer-TF all directly predict

a complete trajectory based on the observation trajectory.

However, Goal-GAN, TPNet and PECNet perform trajectory

prediction based on endpoint targets. Compared with above

baselines, our proposed PECGAN not only adopts a novel self-

attention mechanism, but also assumes an adversarial strategy
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TABLE II
QUANTITATIVE RESULTS OF THE SEVERAL RECENTLY PUBLISHED BASELINES AND OUR METHOD ON ETH-UCY DATASET.

Methods
Performance (ADE/FDE)

ETH HOTEL UNIV ZARA1 ZARA2 AVG

S-LSTM [5] 1.09/2.35 0.79/1.73 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
S-GAN [6] 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.78 0.61/1.21
SoPhie [16] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
Goal-GAN [11] 0.59/1.18 0.19/0.35 0.60/1.19 0.43/0.87 0.32/0.65 0.43/0.85
TPNet [12] 0.84/1.73 0.24/0.46 0.42/0.94 0.33/0.75 0.26/0.60 0.42/0.90
NMMP [7] 0.61/1.08 0.33/0.63 0.52/1.11 0.32/0.66 0.29/0.61 0.41/0.82
Transformer-TF [22] 0.61/1.12 0.18/0.30 0.35/0.65 0.22/0.38 0.17/0.32 0.31/0.55
PECNet [9] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
Ours 0.57/0.90 0.18/0.20 0.27/0.42 0.23/0.37 0.16/0.28 0.28/0.43

TABLE III
QUANTITATIVE RESULTS OF THE BASELINES AND OUR MODEL ON

STANFORD DRONE DATASET.

Methods S-GAN SoPhie Goal-GAN PECNet Ours

K 20 20 20 20 20

ADE 27.33 16.27 12.20 9.96 9.72
FDE 41.44 29.38 22.10 15.88 15.47

to train the generator. Consequently, PECGAN has a better

metric performance against baselines. As shown in Table. II,

PECGAN pushes the state-of-the-art on FDE metric by 11.6%.

Meanwhile, PECGAN pushes state-of-the-art performance on

ADE metric by 3.6%. We obtain the best ADE metrics

in HOTEL, UNIV & ZARA2 and the best FDE metric in

HOTEL, UNIV, ZARA1 & ZARA2.

Stanford Drone Dataset: As shown in Table. III, we compare

PECGAN on the Stanford Drone Dataset with other baselines

on ADE and FDE metrics. We find that our proposed method

is 2.5%/2.7% and 25.5%/42.9% higher than the second &

third methods on ADE/FDE metrics respectively. This result

clearly demonstrates that PECGAN is effective in predicting

pedestrian trajectories.

C. Qualitative Results

In order to visually compare PECGAN with the state-of-

the-art PECNet, we visualize the predicted trajectories of both

methods in Fig. 3. Fig. 3(a) shows the trajectory of a single

pedestrian. For this case in the third row of Fig. 3(a), during

the movement, the sudden change of direction of the target

pedestrian increases the risk of traffic accidents and also brings

challenges to the prediction. In this scenario, our method takes

the occurrence of this situation into account, and predicts the

corresponding trajectory. Fig. 3(b) shows the trajectories of

pedestrians with the same heading direction. From the third

row of Fig. 3(b), one can observe that the target pedestrian

often needs to avoid obstacles during the movement, which

also increases the difficulty of prediction. In this scenario, our

model will generate the continuous trajectories in the process

of avoiding pedestrians standing still, which are more similar

to the ground truth than the PECNet’s predicted trajectories.

Fig. 3(c) shows the trajectories of pedestrians with the opposite

direction of travel. In this scenario, the social interaction

among pedestrians will be more intricate and more difficult.

Compared with PECNet, PECGAN still predict the future

trajectories which are closer to the ground truth.

Observed Trajectory Ground Truth PECGAN PECNET

(a) (b) (c)

Fig. 3. Trajectory visualization of ZARA2 scenario in UCY dataset. (a)
Single pedestrian; (b) Pedestrians in the same direction; (c) Pedestrians in the
opposite direction. The solid line represents the observed trajectory (3.2s), and
the dotted line represents the future trajectory (4.8s). (Yellow: ground truth;
red: PECNet; blue: PECGAN).

D. Ablation Study

To capture the impacts of pedestrian intent and social inter-

action on target pedestrians, a two-stage strategy is proposed

to generate the future trajectory in the generator of PECGAN.

The first stage generates the predicted endpoint according to a

CVAE and the intermediate positions are generated by the self-

attention mechanism of the second stage. To demonstrate the

effectiveness of the CVAE and the self-attention mechanism,

the influence of each approach on the experimental results

needs to be further verified. In this section, two sets of ablation

experiments are carried out on SDD, W/O-CVAE experiment

and W/O-SELF-ATTENTION experiment. In the W/O-CVAE

experiment, predicted endpoints are generated without CVAE.

During the training phase, the potential variable z is directly

sampled from N (0, 1) and fed into the endpoint decoder by

fusing with motion features to generate future endpoints. In the

W/O-SELF-ATTENTION experiment, intermediate positions

are generated without the self-attention mechanism. During

the training phase, the fused features of the past trajectory

feature and the endpoint feature are considered to be the input

into the prediction decoder to obtain the intermediate positions.
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As shown in Table IV, the results of both groups of ablation

experiments were worse than those of PECGAN, which proved

the effectiveness of both approaches. Furthermore, according

to the experimental deviation, one can see that the CVAE has

a greater influence on the experimental results, which also

demonstrates the necessity of the two-stage strategy. In the

two-step strategy, we first generate the predicted endpoints

of pedestrians, and then generate the intermediate coordinates

purposefully.

TABLE IV
ABLATION STUDY ON PECGAN. W/O MEANS THAT THE METHOD IS NOT

USED IN THE EXPERIMENT, W MEANS THAT THE METHOD IS USED IN THE

EXPERIMENT

Methods
CVAE SELF-ATTENTION

w/o w w/o w

ADE 18.52 9.72 9.99 9.72
FDE 34.89 15.47 16.13 15.47

V. CONCLUSION AND DISCUSSION

In this paper, we propose Predicted Endpoint Conditioned

Generative Adversarial Network(PECGAN) for multiple tra-

jectory prediction. A two-stage strategy is adopted to estimate

future trajectory from the past trajectory. In the first stage,

we utilize the endpoint of ground truth as the condition to

estimate the endpoint via a CVAE model. In the second stage,

the estimated endpoint features are combined with past trajec-

tory features, and are refined by social interactions modeling

via self-attention mechanism. After that, the refined motion

features infer the intermediate trajectory more accurately.

An adversarial strategy is adopted to obtain the predicted

endpoints distribution during training generator. Compared

with the baselines, PECGAN achieves the state-of-the-art

performance under ADE and FDE metrics on both Stanford

Drone Dataset and ETH-UCY datasets.

The proposed PECGAN model has achieved better results in

predicting future trajectories. However, the scene information

is not taken into account during inferring future targets. In

the future, we will try to extract scene information through

CNN and combine it with motion features to estimate the

destinations of pedestrians.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Sci-

ence Foundation of China (Grant No. 61972128), the

Natural Science Foundation of Anhui Province (Grant

No.1808085MF176), the Fundamental Research Funds for the

Central Universities of China (PA2021KCPY0050).

REFERENCES
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